Research Article

Rapid Flash Paper Combustion Synthesis of Cobalt Blue Pigment Nanoparticles for Use in Color 3D Printing Formulations

Athanasios B. Bourlinos 1 * , Alexandros Polymeros 1, Christina Papachristodoulou 1, Dimitrios Moschovas 2, Apostolos Avgeropoulos 2, Constantinos E Salmas 2, Michael A Karakassides 2
More Detail
1 Physics Department, University of Ioannina, Ioannina 45110, Greece2 Department of Materials Science & Engineering, University of Ioannina, Ioannina 45110, Greece* Corresponding Author
Applied Functional Materials, 5(4), December 2025, 19-30, https://doi.org/10.35745/afm2025v05.04.0002
Submitted: 17 July 2025, Published: 30 December 2025
OPEN ACCESS   50 Views   70 Downloads
Download Full Text (PDF)

ABSTRACT

This study introduces a broadly applicable and potentially scalable method for synthesizing pigment nanoparticles, using a novel solution combustion approach termed flash paper combustion. The method is demonstrated through the preparation of cobalt blue nanopigment (cobalt aluminate, CoAl2O4) by impregnation of nitrocellulose-based flash paper substrates in a stoichiometric solution of metal nitrates, followed by mild drying. Upon ignition, the flash paper facilitated a rapid, self-sustained combustion reaction, resulting within a few seconds in a lightweight, cobalt blue nanopowder with consistent yield and appearance across samples. The synthesized material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen porosimetry. Structural and morphological analyses verified the formation of a crystalline cubic spinel phase, consisting mainly of nearly spherical nanoparticles with an average size of 20 nm and a specific surface area of 51 m2 g-1. The method offers an efficient approach for synthesizing nanoscale CoAl2O4, showing promise for pigment applications in 3D printing formulations, where the nanoparticles can be easily dispersed without pre-treatment in suitable photoactive resin matrices, enabling the creation of vividly colored artifacts of any type.

CITATION (APA)

Bourlinos, A. B., Polymeros, A., Papachristodoulou, C., Moschovas, D., Avgeropoulos, A., Salmas, C. E., & Karakassides, M. A. (2025). Rapid Flash Paper Combustion Synthesis of Cobalt Blue Pigment Nanoparticles for Use in Color 3D Printing Formulations. Applied Functional Materials, 5(4), 19-30. https://doi.org/10.35745/afm2025v05.04.0002

REFERENCES

  1. Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 2016, 116, 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279
  2. Xiao, X.; Li, Y.; Chen, N.; Xing, X.; Deng, D.; Wang, Y. Combustion agent mediated flash synthesis of porous MCo2O4 (M = Zn, Ni, Cu and Fe) via self-sustained decomposition of metal-organic complexes. Mater. Lett. 2017, 195, 123–126. https://doi.org/10.1016/j.matlet.2017.02.110
  3. Han, M.; Wang, Z.; Xu, Y.; Wu, R.; Jiao, S.; Chen, Y.; Feng, S. Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method. Mater. Chem. Phys. 2018, 215, 251–258. https://doi.org/10.1016/j.matchemphys.2018.05.029
  4. 4. Gyulasaryan, H.; Kuzanyan, A.; Manukyan, A.; Mukasyan, A.S. Combustion synthesis of magnetic nanomaterials for biomedical applications. Nanomaterials 2023, 13, 1902. https://doi.org/10.3390/nano13131902
  5. 5. Padayatchee, S.; Ibrahim, H.; Friedrich, H. B.; Olivier, E. J.; Ntola, P. Solution combustion synthesis for various applications: A review of the mixed-fuel approach. Fluids 2025, 10, 82. https://doi.org/10.3390/fluids10040082
  6. 6. Lennon, E.M.; Tanzy, M.C.; Volpert, V.A.; Mukasyan, A.S.; Bayliss, A. Combustion of reactive solutions impregnated into a cellulose carrier: modeling of two combustion fronts. Chem. Eng. J. 2011, 174, 333–340. https://doi.org/10.1016/j.cej.2011.04.005
  7. 7. Danghyan, V.; Orlova, T.; Roslyakov, S.; Wolf, E. E.; Mukasyan, A. S. Cellulose assisted combustion synthesis of high surface area Ni–MgO catalysts: mechanistic studies. Combust. Flame 2020, 221, 462–475. https://doi.org/10.1016/j.combustflame.2020.08.026
  8. 8. Cavalcante, P.M.T.; Dondi, M.; Guarini, G.; Raimondo, M.; Baldi, G. Colour performance of ceramic nano-pigments. Dyes Pigm. 2009, 80, 226–232. https://doi.org/10.1016/j.dyepig.2008.07.004
  9. 9. Shah, K.W.; Huseien, G.F.; Kua, H.W. A state-of-the-art review on core–shell pigment nanostructure preparation and test methods. Micro 2021, 1, 55–85. https://doi.org/10.3390/micro1010006
  10. 10. Smith, C.A. Blue pigment review. Pigment Resin Technol. 1984, 13, 14–24. https://doi.org/10.1108/eb042058
  11. 11. Duell, B. A.; Li, J.; Subramanian, M. A. Hibonite blue: A new class of intense inorganic blue colorants. ACS Omega 2019, 4, 22114-22118. https://doi.org/10.1021/acsomega.9b03255
  12. 12. Ruiz-Moreno, S.; Soneira, M.; Perez-Pueyo, R. Practical identification of cobalt-based blue pigments detecting the induced photoluminescence by a He–Ne laser using a Raman spectrometer. J. Raman Spectrosc. 2024, 55, 299–304. https://doi.org/10.1002/jrs.6636
  13. 13. Zayat, M.; Levy, D. Blue CoAl2O4 particles prepared by the sol–gel and citrate-gel methods. Chem. Mater. 2000, 12, 2763–2769. https://doi.org/10.1021/cm001061z
  14. 14. Paulo-Redondo, G.; Nebot-Díaz, I. Study of the synthesis variables in the preparation of CoAl2O4 pigment using microwaves to reduce energetic consumption. Eng 2023, 4, 2826–2839. https://doi.org/10.3390/eng4040159
  15. 15. Chavarriaga, E.A.; Wermuth, T.B.; Arcaro, S.; García, C.; Ramirez, M.A.; Gómez, A.; Bezzon, V.D.N.; Orlando, M.T.D.; Alarcón, J.; Bergmann, C.P.; Lopera, A.A. One-step synthesis of CoAl₂O₄ inorganic pigment by solution combustion: The impact of fuel and ammonium nitrate. Ceram. Int. 2024, 50, 45–54. https://doi.org/10.1016/j.ceramint.2023.09.205
  16. 16. Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN: A new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newslett. 1998, 20, 5–8.
  17. 17. Döbelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. https://doi.org/10.1107/S1600576715014685
  18. 18. Morris, E.; Pulham, C.R.; Morrison, C.A. Structure and properties of nitrocellulose: Approaching 200 years of research. RSC Adv. 2023, 13, 32321–32333. https://doi.org/10.1039/D3RA05457H
  19. 19. Yolhamid, M.N.A.G.; Ibrahim, F.; Amir, M.A.U.; Ibrahim, R.; Adnan, S.; Yahya, M.Z.A. The processing of nitrocellulose from rhizophora, palm oil bunches (EFB) and kenaf fibres as a propellant grade. Int. J. Eng. Technol. 2018, 7, 59–65. https://doi.org/10.14419/ijet.v7i4.29.21844
  20. 20. Duan, X.; Pan, M.; Yu, F.; Yuan, D. Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J. Alloys Compd. 2011, 509, 1079–1083. https://doi.org/10.1016/j.jallcom.2010.09.199
  21. 21. Irfan, H.; Racik, K.M.; Anand, S. X-ray peak profile analysis of CoAl₂O₄ nanoparticles by Williamson–Hall and size–strain plot methods. Mod. Electron. Mater. 2018, 4, 31–40. https://doi.org/10.3897/j.moem.4.1.33272
  22. 22. Gingasu, D.; Mindru, I.; Culita, D.C.; Marinescu, G.; Somacescu, S.; Ianculescu, A.; Surdu, V.-A.; Preda, S.; Oprea, O.; Vasile, B.S. Mentha piperita-mediated synthesis of cobalt aluminate nanoparticles and their photocatalytic activity. J. Mater. Sci.: Mater. Electron. 2021, 32, 11220–11231. https://doi.org/10.1007/s10854-021-05791-z
  23. 23. Liebermann, R.C.; Jackson, I.; Ringwood, A.E. Elasticity and phase equilibria of spinel disproportionation reactions. Geophys. J. Int. 1977, 50, 553–586. https://doi.org/10.1111/j.1365-246X.1977.tb01335.x
  24. 24. Desautels, R.D.; van Lierop, J.; Cadogan, J.M. Disproportionation of cobalt ferrite nanoparticles upon annealing. J. Phys. Conf. Ser. 2010, 217, 012105. https://doi.org/10.1088/1742-6596/217/1/012105
  25. 25. Padmapriya, G.; Ananthi, K. Green synthesis and characterization studies of spinel CoAl2O4 nano-catalysts by microwave combustion method. Malaya J. Mat. 2020, 2, 2183–2186. https://doi.org/10.26637/MJM0S20/0561
  26. 26. Zhang, W.; Li, Z.; Wu, G.; Wu, W.; Zeng, H.; Jiang, H.; Zhang, W.; Wu, R.; Xue, Q. Effects of coloration of spinel CoAl2O4 cobalt blue pigments: Composition, structure, and cation distribution. Inorganics 2023, 11, 368. https://doi.org/10.3390/inorganics11090368
  27. 27. Ibrahim, M.A.; El‐Araby, R.; Abdelkader, E.; El Saied, M.; Abdelsalam, A.M.; Ismail, E.H. Waste cooking oil processing over cobalt aluminate nanoparticles for liquid biofuel hydrocarbons production. Sci. Rep. 2023, 13, 3876. https://doi.org/10.1038/s41598-023-30828-0
  28. 28. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
  29. 29. Fardood, S. T.; Moradnia, F.; Ganjkhanlu, S.; Ouni, L.; Ramazani, A.; Sillanpää, M. Green synthesis and characterization of spinel CoAl2O4 nanoparticles: Efficient photocatalytic degradation of organic dyes. Inorg. Chem. Commun. 2024, 167, 112719. https://doi.org/10.1016/j.inoche.2024.112719
  30. 30. Salmas, C.E.; Androutsopoulos, G.P. Rigid sphere molecular model enables an assessment of the pore curvature effect upon realistic evaluations of surface areas of mesoporous and microporous materials. Langmuir 2005, 21, 11146–11160. https://doi.org/10.1021/la0508644
  31. 31. Gallet, J.-C.; Domine, F.; Zender, C.S.; Picard, G. Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere 2009, 3, 167–182. https://doi.org/10.5194/tc-3-167-2009
  32. 32. Granados, N.B.; Yi, E.; Laine, R.; Baena, O.J.R. CoAl₂O₄ blue nanopigments prepared by liquid-feed flame spray pyrolysis method. Rev. Mater. 2015, 20, 580–587. https://doi.org/10.1590/S1517-707620150003.0059
  33. 33. Ma, B.; Chaudhary, J.P.; Zhu, J.; Sun, B.; Huang, Y.; Sun, D. Ni nanoparticle–carbonized bacterial cellulose composites for the catalytic reduction of highly toxic aqueous Cr(VI). J. Mater. Sci.: Mater. Electron. 2020, 31, 7044–7052. https://doi.org/10.1007/s10854-020-03270-5
  34. 34. Durin-France, A.; Ferry, L.; Lopez-Cuesta, J.-M.; Crespy, A. Magnesium hydroxide/zinc borate/talc compositions as flame-retardants in EVA copolymer. Polym. Int. 2000, 49, 1101–1105. https://doi.org/10.1002/1097-0126(200010)49:10<1101::AID-PI523>3.0.CO;2-5
  35. 35. Uzoma, P.C.; Obidiegwu, M.U.; Ezeh, V.O.; Akanbi, M.N.; Onuoha, F.N. The effect of magnesium hydroxide/zinc borate and magnesium hydroxide/melamine flame retardant synergies on polypropylene. Int. J. Eng. Sci. 2014, 3, 63–68.
  36. 36. Fayyadh, S.M.; Ahmed, A.B. A comparative study between the use of nanoparticles of magnesium oxide and zinc oxide as coating for polymeric surfaces: A flame retardant and corrosion resistance. Mater. Chem. Phys. 2024, 314, 128899. https://doi.org/10.1016/j.matchemphys.2024.128899
  37. 37. Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Haq, M.I.U. 3D printing: A review of processes, materials and applications in Industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. https://doi.org/10.1016/j.susoc.2021.09.004
  38. 38. Cheng, Y.-L.; Huang, K.-C. Preparation and characterization of color photocurable resins for full-color material jetting additive manufacturing. Polymers 2020, 12, 650. https://doi.org/10.3390/polym12030650
  39. 39. Mosleh, M. Auto-combustion preparation and characterization of CoAl₂O₄ nanoparticles with different morphologies and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 2017, 28, 773–777. https://doi.org/10.1007/s10854-016-5589-8
  40. 40. Chanteau, S.H.; Tour, J.M. Synthesis of anthropomorphic molecules: The nanoputians. J. Org. Chem. 2003, 68, 8750–8766. https://doi.org/10.1021/jo0349227