Research Article

Design and Fabrication of Humidity Sensors Based on Ceramic Thin Films

Wei-Cheng Huang 1, Yun-Cheng Li 1, Sutatch Ratanaphan 2, Lung-Ming Fu 3, Chia-Yen Lee 1 *
More Detail
1 Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan2 Department of Tool and Materials Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand3 Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan* Corresponding Author
Applied Functional Materials, 5(2), June 2025, 8-17, https://doi.org/10.35745/afm2025v05.02.0002
Published: 30 June 2025
OPEN ACCESS   2348 Views   19 Downloads
Download Full Text (PDF)

ABSTRACT

This research utilizes Micro-Electro-Mechanical Systems (MEMS) technology to develop a resistance-based humidity sensor fabricated on an aluminum oxide (Al2O3) substrate. Microfabrication techniques are first employed to pattern the temperature and humidity sensing electrodes on the Al2O3 substrate. Electron Beam Evaporation (EBE), followed by a lift-off procedure, is then used to pattern platinum (Pt) and chromium (Cr) electrodes for temperature and humidity sensing, respectively. Finally, radio frequency (RF) sputtering is performed to deposit thin layers of titanium dioxide (TiO2) and tungsten trioxide (WO3) on the electrodes as sensing layers. The working temperature and humidity are measured concurrently by monitoring the resistance signals of the device using LabVIEW software. The effects of the sputtering and annealing times on the structures of the two ceramic films are explored. In addition, the corresponding changes in the temperature and humidity sensing performance are evaluated and compared. The results show that the TiO2 film has a better moisture expulsion capability than the WO3 film. Consequently, the sensor incorporating the TiO2 film shows a superior sensitivity and faster response time. The maximum sensitivity is observed in the sample annealed at 450°C for 4 h owing to the formation of optimally-sized pores that enhance moisture absorption and removal.

CITATION (APA)

Huang, W.-C., Li, Y.-C., Ratanaphan, S., Fu, L.-M., & Lee, C.-Y. (2025). Design and Fabrication of Humidity Sensors Based on Ceramic Thin Films. Applied Functional Materials, 5(2), 8-17. https://doi.org/10.35745/afm2025v05.02.0002

REFERENCES

  1. Kassas, A.; Zahwa, I.; Hussein, B.; Bernard, J.; Lelièvre, C.; Mouyane, M.; Noudem, J.; Houivet, D. Enhanced humidity sensing performance of LiF-doped MgTiO3 ceramics via spark plasma sintering. Heliyon. 2024, 10, e33999. https://doi.org/10.1016/j.heliyon.2024.e33999
  2. Chou, K. S.; Lee, T. K.; Liu, F. J. Sensing mechanism of a porous ceramic as humidity sensor. Sensors and Actuators B. 1999, 56, 106–111. https://doi.org/10.1016/S0925-4005(99)00187-2
  3. Thanamoon, N.; Thongyong, N.; Sreejivungsa, K.; Chanlek, N.; Jarernboon, W.; Thongbai, P. Outstanding dielectric permittivity and humidity sensitivity in (Y/Sb) co-doped TiO2 ceramics with rapid response/recovery time. Sensors and Actuators: B. Chemical. 2024, 419, 136372. https://doi.org/10.1016/j.snb.2024.136372
  4. Choudapur, V.H.; V, J. A.; Tudorache, F.; Ayachit, N.H.; Shaikh, S. F.; Ubaidullah, M. Structural, Optical and Humidity Sensing performance of Lanthanum doped CoCr2O4 nano-ceramics for Sensor Applications. Ceramics International. 2024, 50, 44056–44067. https://doi.org/10.1016/j.ceramint.2024.08.255
  5. Rochaa, K.O.; Zanetti, S.M. Structural and properties of nanocrystalline WO3/TiO2-based humidity sensors elements prepared by high energy activation. Sensors and Actuators B. 2011, 157, 654–661. https://doi.org/10.1016/j.snb.2011.05.048
  6. Wang, X.; Li, J. H.; Li, Y. L.; Liu, L. J.; Guan, W. M. Emulsion-templated fully three-dimensional interconnected porous titania ceramics with excellent humidity sensing properties. Sensors and Actuators B. 2016, 237, 894–898. https://doi.org/10.1016/j.snb.2016.07.014
  7. Faia, P.M.; Ferreira, A.J.; Furtado, C.S. Establishing and interpreting an electrical circuit representing a TiO2–WO3 series of humidity thick film sensors. Sensors and Actuators B. 2009, 140, 128–133. https://doi.org/10.1016/j.snb.2009.04.016
  8. Faiaa, P. M.; Libardib, J.; Louro, C. S. Effect of V2O5 doping on p- to n-conduction type transition of TiO2:WO3 composite humidity sensors. Sensors and Actuators B. 2016, 222, 952–964. https://doi.org/10.1016/j.snb.2015.09.039
  9. Li, P.; Yang, F. Preparation and performance of TiO2/ZnO humidity sensor based on TiO2. Materials Science and Engineering B. 2023, 298, 116902. https://doi.org/10.1016/j.mseb.2023.116902
  10. Lee, C. Y.; Lee, G. B. Humidity Sensors: A Review. Sensor Letters. 2005, 3, 1–14. https://doi.org/10.1166/sl.2005.001
  11. Zhang, C.; Zhang, Y.; Cao, K.; Guo, Z.; Han, Y.; Hu, W.; Wu, Y.; She, Y.; He, Y. Ultrasensitive and reversible room-temperature resistive humidity sensor based on layered two-dimensional titanium carbide. Ceramics International. 2021, 47, 6463–6469. https://doi.org/10.1016/j.ceramint.2020.10.229
  12. Lina, X.; Zhanga, C.; Yanga, S.; Guoc, W.; Zhang, Y.; Yang, Z.; Ding, G. The impact of thermal annealing on the temperature dependent resistance behavior of Pt thin films sputtered on Si and Al2O3 substrates. Thin Solid Films. 2019, 685, 372–378. https://doi.org/10.1016/j.tsf.2019.06.036
  13. Omran, H.; Salama, K. N. Design and fabrication of capacitive interdigitated electrodes for smart gas sensors. 3rd IEEE International Conference on Smart Instrumentation Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia, November 24-25, 2015. https://doi.org/10.1109/ICSIMA.2015.7559021
  14. Zhu, Z.; Long, Y.; Xue, X.; Yin, Y.; Zhu, B.; Xu, B. Phase-transition kinetics of calcium-doped TiO2: A high-temperature XRD study. Ceramics International. 2022, 48, 25056–25063. https://doi.org/10.1016/j.ceramint.2022.05.160
  15. Brüger, A.; Fafilek, G.; Neumann-Spallart, M. Identification of different WO3 modifications in thin films for photocatalytic applications by peak shape analysis in high temperature XRD diffractometry. Journal of Photochemistry & Photobiology, A: Chemistry. 2024, 457, 115879. https://doi.org/10.1016/j.jphotochem.2024.115879