Research Article

Powder X-ray Line Diffraction Study on Mono Sodium L-glutamate Pentahydrate by Whole Powder Pattern Fitting Analysis

Md. Ashraful Alam 1 *
More Detail
1 Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh* Corresponding Author
Applied Functional Materials, 5(2), June 2025, 1-7, https://doi.org/10.35745/afm2025v05.02.0001
Published: 30 June 2025
OPEN ACCESS   2362 Views   9 Downloads
Download Full Text (PDF)

ABSTRACT

The crystallographic bibliography of mono Sodium L-glutamate Pentahydrate (MSLGPH) found unique unparalleled structural geometry using powder X-ray diffraction (XRD). The XRD analysis revealed the atomic structure of MSLGPH crystals providing a detailed refinement of lattice parameters and crystal symmetry. Crystallography revealed dislocation density of 2.009 × 10⁻⁴ nm⁻², crystallinity index of 1.98, unit cell density of 1.48 g/cm³ and specific surface area of 57.46 m²/g, contributing to unique structural geometry. Rietveld refinement confirmed a unified 100.0 % crystalline phase using the WPPF method. The calculated lattice parameters are a= 6.224, b= 16.669, c= 5.992 Å; α= 98.77, β= 99.83, γ= 98.54° in a triclinic crystal system with lattice volume of 595.565 ų and strain of 0.163 %. The strongest diffraction distinct 2θ at 20.364° (0-31) plane. Various models were used to estimate crystallite size, with the Scherrer equation exploring an average crystallite size of 70.55 nm for nano confirmation.

CITATION (APA)

Alam, M. A. (2025). Powder X-ray Line Diffraction Study on Mono Sodium L-glutamate Pentahydrate by Whole Powder Pattern Fitting Analysis. Applied Functional Materials, 5(2), 1-7. https://doi.org/10.35745/afm2025v05.02.0001

REFERENCES

  1. Longden, J.P. A Method for the Quantitative Recovery of Mononucleotides from Fermentation Waste by Precipitation. Master's Thesis, Lancaster University, UK. 2015. https://www.proquest.com/openview/35695461088e8f55a04e48395bae67a8/1?pqorigsite=gscholar&cbl=2026366&diss=y
  2. Kashiwagi, T.; Sano, C.; Kawakita, T.; Nagashima, N. Monosodium l-Glutamate Pentahydrate. Cryst. Struct. Commun. 1995, 51 (6), 1053–1056. https://doi.org/10.1107/S0108270194014472
  3. Perea, C.G.; Ihle, C.F.; Dyer, L.; et al. Copper Sulfide Precipitation from Alkaline Monosodium Glutamate Solutions. Miner. Eng. 2024, 215, 108816. https://doi.org/10.1016/j.mineng.2024.108816
  4. Ahmed, S.; Shishir, M.K.H.; Sadia, S.I.; et al. Crystallographic Phase Biographs of Copper Nanocrystalline Material: A Statistical Perspective Review. Nano-Struct. Nano-Objects 2024, 39, 101275. https://doi.org/10.1016/j.nanoso.2024.101275
  5. Al-Mahmud, M.R.; Shishir, M.K.H.; Ahmed, S.; et al. Stoichiometry Crystallographic Phase Analysis and Crystallinity Integration of Silver Nanoparticles: A Rietveld Refinement Study. J. Cryst. Growth 2024, 643, 127815. https://doi.org/10.1016/j.jcrysgro.2024.127815
  6. Hossain, M.S.; Ahmed, S. Sustainable Synthesis of Nano CuO from Electronic Waste (E-waste) Cable: Evaluation of Crystallite Size via Scherrer Equation, Williamson-Hall Plot, Halder-Wagner model, Monshi-Scherrer Model, Size-Strain Plot. Results Eng. 2023, 20, 101630. https://doi.org/10.1016/j.rineng.2023.101630
  7. Pandey, A.; Dalal, S.; Dutta, S.; et al. Structural Characterization of Polycrystalline Thin Films by X-ray Diffraction Techniques. J. Mater. Sci. - Mater. Electron. 2021, 32, 1341–1368.
  8. Alam, M.A.; Shishir, M.K.H.; Sarkar, D.; et al. X-ray Line Diffraction Study of Preferred Oriented Hexagonal Zincite Nanocrystals: A Crystallographic Investigation. J. Cryst. Growth 2025, 128230. https://doi.org/10.1016/j.jcrysgro.2025.128230
  9. Aidid, A.R.; Shishir, M.K.H.; Rahaman, M.A.; et al. Powder X-ray Line Diffraction Pattern Profiling of Anatase-Quartz Binary Oxide: A Crystallographic Investigation. Next Mater. 2025, 8, 100571. https://doi.org/10.1016/j.nxmate.2025.100571
  10. Islam, M.; Islam, M.T.; Shishir, M.K.H.; et al. X-ray Crystallographic Structural Profiling of Polyvinyl Alcohol (PVA) Capped Nickel Oxide Nanoparticle. Nano Trends 2025, 10, 100106. https://doi.org/10.1016/j.nwnano.2025.100106
  11. Ahmed, S.; Shishir, M.K.H.; Islam, M.T.; et al. Crystallinity Integration of Anatase (TiO2) Nanocrystal by Whole Powder Pattern Fitting (WPPF) Method: A Rietveld Refinement Study. Results Mater. 2025, 26, 100673. https://doi.org/10.1016/j.rinma.2025.100673
  12. Alam, M.A.; Ahmed, S.; Bishwas, R.K.; et al. Crystal Growth Behavior Interpret of Co-precipitated Derived Nickel Oxide (NiO) Nanocrystals. Nano-Struct. Nano-Objects 2025, 42, 101494. https://doi.org/10.1016/j.nanoso.2025.101494
  13. Ahmed, S.; Alam, M.A.; Sadia, S.I.; et al. Stoichiometry Low-temperature Dynamics Crystal Growth Interpret of Zinc Oxide Hexagonal Nanocrystals. Next Mater. 2025, 7, 100636. https://doi.org/10.1016/j.nxmate.2025.100636
  14. Ray, G.; Haque, I.; Ahmed, T.; et al. Synthesis of Carbon Capturing NaX Zeolite from Rice Husk Ash: Evaluation of Its Adsorption Properties. ACS Sustain. Resour. Manag. 2025, 2(4), 662–672. https://doi.org/10.1021/acssusresmgt.5c00019
  15. Sachchu, M.M.H.; Anik, F.K.; Ahmed, S.; et al. Crystallographic Investigation of PVA@PLA Nanocomposite Film by X-ray Diffraction: Insight from High Resolution TEM. J. Eng. Res. Rep. 2025, 27 (3), 310–327. https://doi.org/10.9734/jerr/2025/v27i31436